

ИЗМЕРИТЕЛЬ ФИЗИЧЕСКИХ ВЕЛИЧИН МНОГОКАНАЛЬНЫЙ МИФВ

Руководство по эксплуатации МКСН.405544.030 РЭ

Разработал:	
	_ П. Л. Орфанов
	_ 2017
Проверил:	
	_ В.А. Шелудков
	2017
Н.контролер:	_ Г. А. Кляут
	_ 2017
Начальник СКІ	Б:
	_Ю.О.Малышев
	2017

АО « НПП « Эталон » 644009, Россия, г. Омск, ул. Лермонтова, 175

Содержание

1 Определения, обозначения и сокращения
2 Требования безопасности
3 Описание прибора и принципов его работы4
4 Подготовка прибора к работе12
5 Работа прибора15
6 Поверка (калибровка) прибора32
7 Техническое обслуживание41
8 Текущий ремонт41
9 Транспортирование и хранение42
10 Пломбирование42
11 Сроки службы и хранения, гарантии изготовителя42
Приложение А Исполнения прибора43
Приложение Б Схема подключения приборов и оборудования для подстройки и для опре-
деления основной погрешности МИФВ-1 при измерении напряжения и плотности тепло-
вого потока
Приложение В Схема подключения приборов и оборудования для определения основной
погрешности МИФВ-1 при измерении температуры ТП45
Приложение Г Схема подключения приборов и оборудования для определения основной
погрешности МИФВ-1 при измерении температуры ТС46
Приложение Д Схема подключения приборов и оборудования для определения основной
погрешности МИФВ-247

Настоящее руководство по эксплуатации (далее - РЭ) предназначено для ознакомления с измерителем физических величин многоканальным МИФВ (далее – прибором или МИФВ) с целью осуществления его правильной эксплуатации.

Руководство по эксплуатации содержит сведения об устройстве, принципе действия, технических характеристиках, конструкции, техническом обслуживании, транспортировании и хранении. К эксплуатации прибора допускаются лица, изучившие настоящее РЭ и прошедшие необходимый инструктаж.

1 Определения, обозначения и сокращения

1.1 В тексте приняты следующие сокращения:

АЦП – аналого-цифровой преобразователь;

ЖКЭ - жидкокристаллический экран;

НСХ - номинальная статическая характеристика;

ПК - персональный компьютер;

ПТП - преобразователь теплового потока;

СПО - сервисная программа обслуживания;

ТП - преобразователь термоэлектрический (термопара);

ТС – термопреобразователь сопротивления;

ТД – тензорезистивный датчик, тензодатчик;

ТЭДС - электродвижущая сила, возникающая в электрической цепи, состоящей из нескольких разнородных проводников, контакты между которыми имеют различную температуру.

2 Требования безопасности

2.1 Прибор соответствовует требованиям безопасности по ГОСТ 12.2.091-2012. Категория измерений І.

2.2 В экологическом отношении прибор безопасен.

3 Описание прибора и принципов его работы

3.1 Назначение

3.1.1 Измеритель физических величин многоканальный МИФВ предназначен для измерения, хранения и обработки данных, полученных от подключаемых преобразователей физических величин (температуры, плотности теплового потока, напряжения, массы).

Прибор выпускается двух видов: МИФВ-1 и МИФВ-2.

Прибор состоит из устройства сбора информации УСИ-1 (в дальнейшем – УСИ-1), коммутаторов измерительных КИ-8 ТЕРМО (далее – модулей или КИ-8 ТЕРМО) для МИФВ-1 или коммутаторов измерительных КИ-4 ТЕНЗО (далее – модулей или КИ-4 ТЕНЗО) для МИФВ-2. Вид и количество модулей определяется исполнением прибора (см. приложение A).

Модули преобразуют аналоговые сигналы преобразователей в цифровую форму и передают её устройству сбора информации УСИ-1 по интерфейсу RS-485. УСИ-1 обрабатывает результаты измерений в соответствии с установленной конфигурацией и сохраняет их на SD карте.

3.1.2 Основные области применения:

- энергоаудит;

- лабораторные исследования;

- промышленность.

3.1.3 Условия эксплуатации соответствуют группе С3 по ГОСТ Р 52931-2008 при температуре эксплуатации от минус 10 до плюс 50 °С.

3.1.4 Вид климатического исполнения УХЛ 3.1 по ГОСТ 15150-69.

3.1.5 По стойкости к механическим воздействиям прибор соответствуют группе L1 по ГОСТ Р 52931-2008.

3.2 Технические характеристики

3.2.1 Прибор обеспечивает по команде с клавиатуры:

- ввод количества подключаемых модулей (от 1 до 6);

- ввод количества измерений (от 1 до 9999);

- установку индикации выключения прибора после измерений (регистрации) ;

- ввод даты и времени встроенных часов;

- ввод интервала времени между циклами измерений (от 25 до 60 с или от 1 до 60 мин);

- ввод единицы измеряемой физической величины для каждого модуля и каждого канала модуля (мВ, °С, Вт/м² для МИФВ-1; мВ/В, Н, кг для МИФВ-2);

3 Зам. МКСН43-20

- ввод коэффициента преобразования ПТП для МИФВ-1(от 0,1 до 99,9 Вт/ (м²·мВ));

- ввод чувствительности ТД (от 0,01 до 99999,99) и предела измерения ТД

(от 0,01 до 999,99) (для МИФВ-2);

- вывод на экран результатов измерений для каждого модуля и каждого канала модуля;

- вывод на экран значения температуры свободных концов термопары каждого модуля (для МИФВ-1);

- запись результатов измерений на SD карту в файл с расширением .csv;

- подстройку (калибровку) по внешним опорным сигналам (для МИФВ-1);

- отключение после проведения измерений.

3.2.2 Прибор обеспечивает индикацию разряда элемента питания.

3.2.3 Питание прибора осуществляется от выносного блока питания постоянным напряжением 5 В. Ток потребления прибора не более 450 мА.

3.2.4 Габаритные размеры:

- УСИ-1 - не более 250х220х115 мм;

- модуля - не более 135х80х35 мм.

3.2.5 Масса прибора соответствует данным таблицы А1.

3.2.6 Типы используемых преобразователей, соответствующие им диапазоны допускаемой основной погрешности, для МИФВ-1 приведены в измерений и пределы таблице 1 и таблице 2.

Таблица 1

Тип используемых преобразователей	Условное обозначение НСХ	Диапазон измеряемых температур, °С	Пределы допускаемой основной приведенной по- грешности, %, не более
ТПР	В	от 300 до 1800	$\pm 0,5$
ТПП	S	от 0 до 1750	±0,3
TXA	K	от – 50 до 1370	$\pm 0,5$
ТХК	L	от – 50 до 800	$\pm 0,25$
TCM	50M	от –100 до 200	$\pm 0,2$
TCM	100M	от –100 до 200	$\pm 0,2$
ТСП	50П	от –100 до 850	$\pm 0,2$
ТСП	100П	от –100 до 850	$\pm 0,2$
TC	Pt50	от –100 до 850	$\pm 0,2$
TC	Pt100	от –100 до 850	$\pm 0,2$

3 Зам. МКСН43-20

МКСН.405544.030 РЭ

Тип используемого преобразователя	Диапазон измеряемой плот- ности тепловых потоков, Вт/м ²	Пределы допускаемой основной абсолютной погрешности, Вт/м², не более
ПТП	0 2000	±(0,6·C)
Примечание – С – значение в	соэффициента преобразования Г	ITП, Bт/(м²·мВ).

Таблица 2

3.2.7 Диапазон измерений напряжения с выходов преобразователей МИФВ-1 от минус 500,0 до 500,0 мВ.

3.2.8 Пределы допускаемой основной абсолютной погрешности МИФВ-1 при измерении напряжения Δ_{U_2} мкВ, определяются по формуле

$$\Delta_{\rm U} = \pm (6 + 1, 5 \cdot 10^{-3} \cdot U_{\rm \scriptscriptstyle H3M}), \tag{1}$$

где U_{изм} – значение модуля измеренного напряжения, мкВ.

3.2.9 Диапазон измерений коэффициента преобразования МИФВ-2 ± 5,0 мВ/В.

3.2.10 Пределы допускаемой основной относительной погрешности МИФВ-2 не более $\pm 0,15$ %.

3.2.11 Время от начала балансировки до начала измерения для обеспечения заданной допускаемой основной относительной погрешности МИФВ-2 не более 20 с.

3.2.12 Пределы допускаемой дополнительной погрешности прибора, вызванной изменением температуры окружающего воздуха от нормальной, составляют не более половины пределов допускаемой основной погрешности на каждые 10 °C изменения температуры окружающего воздуха.

3.2.13 Пределы допускаемой дополнительной погрешности прибора при измерении температуры, вызванной влиянием повышенной влажности окружающего воздуха 95 % при температуре 35 °C, составляют не более половины пределов допускаемой основной погрешности.

3.2.14 Прибор тепло-, холодо- и влагоустойчив в соответствии с требованиями ГОСТ Р 52931-2008, установленными для группы СЗ при рабочей температуре эксплуатации от минус 10 до плюс 50 °C.

3.2.15 Прибор в транспортной таре тепло-, холодо- и влагопрочен в соответствии с требованиями ГОСТ Р 52931-2008 при следующих значениях предельных условий транспортирования :

- температура окружающего воздуха - от минус 25 до плюс 55 °С;

- относительная влажность воздуха 95 % при температуре 35 °C.

3 Зам. МКСН43-20

3.2.16 Прибор в транспортной таре выдерживает без повреждений воздействие транспортной тряски в соответствии с требованиями ГОСТ Р 52931-2008 в течение 1 часа при числе ударов от 80 до 120 в минуту с максимальным ускорением 30 м/с².

3.2.17 Степень защиты прибора соответствует IP20 по ГОСТ 14254-2015.

3.2.18 Средняя наработка до отказа прибора в нормальных условиях применения составляет не менее 25000 часов (не распространяется на элементы питания).

3.2.19 Средний срок службы прибора не менее 8 лет.

3.2.20 По электромагнитной совместимости прибор соответствует ГОСТ Р МЭК 61326-1-2014. Источника радиопомех в приборе нет.

3.2.21 Помехоустойчивость прибора соответствует требованиям ГОСТ Р МЭК 61326-1-2014 для оборудования класса В, используемого в контролируемой электромагнитной обстановке. Критерий качества функционирования определяется по ГОСТ Р МЭК 61326-1-2014 для оборудования, работающего в режиме непрерывно выполняемых и контролируемых функций.

3.3 Комплектность прибора

- 3.3.1 Комплектность прибора соответствует таблице 3.
- Таблица 3

Обозначение	Наименование	Количество	Примечание
МКСН.465614.001	Устройство сбора информа- ции УСИ-1	1 шт.	
МКСН.411611.003	Коммутатор измерительный КИ-4 ТЕНЗО	от 1 до 6 шт.*	для МИФВ-2
МКСН.411611.004	Коммутатор измерительный КИ-8 ТЕРМО	от 1 до 6 шт.*	для МИФВ-1
МКСН.434641.086	Кабель	от 1 до 6 шт.*	
15EDGK-3,5-04P-1-4	Соединитель	от 8 до 48 шт.*	для МИФВ-1
15EDGK-3,5-06P-1-4	Соединитель	от 4 до 24 шт.*	для МИФВ-2
МКСН.405544.030 РЭ	Руководство по эксплуатации	1 экз.	
МКСН.405544.030 ФО	Формуляр	1 экз.	
* Количество в зав	исимости от исполнения.		

3.4 Устройство и принцип работы прибора

3.4.1 Конструкция прибора

Прибор является переносным, состоит из:

- устройства сбора информации УСИ-1;

- коммутаторов измерительных КИ-8 ТЕРМО или КИ-4 ТЕНЗО (в зависимости от ис-

полнения).

Внешний вид устройства сбора информации УСИ-1 приведен на рисунке 1.

Внешний вид коммутатора измерительного КИ-8 ТЕРМО показан на рисунке 2. Внешний вид коммутатора измерительного КИ-4 ТЕНЗО показан на рисунке 3.

Крышка не показана

Рисунок 1 – Внешний вид УСИ-1

Рисунок 2 – Внешний вид коммутатора измерительного КИ-8 ТЕРМО

Рисунок 3 – Внешний вид коммутатора измерительного КИ-4 ТЕНЗО

На лицевой панели УСИ-1 расположены:

- ЖКЭ;

- слот "SD", предназначенный для установки SD карты;

- светодиод " ", предназначенный для индикации включения прибора;

- светодиод " 🚽", предназначенный для индикации обмена с модулями;

- светодиод " , предназначенный для индикации зарядки аккумуляторной бата- реи;

- кнопка "X", предназначенная для включения (выключения) прибора, а также выполняющая функцию отмены;

- кнопка "- ", предназначенная для подтверждения выбора пользователем;

- кнопка "▲", предназначенная для прокрутки режимов индикации (в сторону увеличения), а также для ввода числовых значений;

- кнопка "▼", предназначенная для прокрутки режимов индикации (в сторону уменьшения), а также для ввода числовых значений;

- кнопка "◀", предназначенная для прокрутки режимов индикации влево;
- кнопка "▶", предназначенная для прокрутки режимов индикации вправо;
- наименование УСИ-1;
- зарегистрированный товарный знак предприятия-изготовителя.

На крышке расположена этикетка, на которой нанесены:

- а) зарегистрированный товарный знак предприятия-изготовителя;
- б) наименование прибора;
- в) заводской номер прибора;
- г) месяц, год выпуска;
- д) наименование и адрес предприятия-изготовителя.

На боковой стороне УСИ-1 расположены:

- гнездо "=5В", предназначенное для подключения блока питания;
- разъемы X1, X2, X3, предназначенные для подключения модулей.

3.4.2 Устройство прибора

3.4.2.1 Структурная схема прибора приведена на рисунке 4.

Устройство сбора информации УСИ-1 состоит из :

- микроконтроллера;
- ЖКЭ;
- набора кнопок (клавиатуры);
- разъемов "X1", "X2", "X3";
- гнезда "= 5В";

- стабилизатора напряжения;
- аккумуляторной батареи;
- преобразователя интерфейса RS-485.

- А1 устройство сбора информации УСИ-1;
- А2 коммутатор измерительный КИ-8 ТЕРМО (или КИ-4 ТЕНЗО);
- АЗ блок питания.

Рисунок 4 – Структурная схема прибора

Набор кнопок служит для ввода в прибор необходимых данных и управления работой прибора. Разъемы "X1", "X2", "X3" служат для подключения коммутаторов измерительных КИ-8 ТЕРМО или коммутаторов измерительных КИ-4 ТЕНЗО в зависимости от исполнения прибора, гнездо "= 5B" - для подключения блока питания. Обмен информацией микро-контроллера с модулями происходит через преобразователь интерфейса RS-485.

Вся необходимая информация выдается микроконтроллером на ЖКЭ прибора.

Питание прибора производится либо от аккумуляторой батареи, либо от выносного блока питания. Переключение "аккумуляторная батарея - блок питания" происходит автоматически при отключении блока питания.

Модуль подсоединяется к УСИ-1 кабелем МКСН 434641.086, входящим в комплект поставки. В случае использования более одного модуля, остальные подключаются кабелем МКСН 434641.086 через вторую вилку УСИ-1 либо дополнительным кабелем МКСН 434641.086 между модулями.

Каждый модуль содержит микроконтроллер, коммутатор, АЦП, компенсатор температуры свободных концов термопар (только для КИ-8 ТЕРМО) и преобразователь интерфейса RS-485.

Модуль имеет адрес, который используется прибором при обмене информацией. При

получении команды от микроконтроллера прибора модуль передает ответное сообщение, содержащее сигнал подтверждения приема команды, производит цикл измерений напряжения и передает данные на микроконтроллер прибора. Обмен информацией прибора с модулями происходит последовательно поадресно: первый адрес, второй адрес и т.д. При получении информации с последнего модуля, микроконтроллер прибора обрабатывает результаты в соответствии с установленной конфигурацией, отображает их на ЖКЭ и сохраняет на SD карте.

3.4.3 Подстройка МИФВ-1

3.4.3.1 Подстройка МИФВ-1 предназначена для учета отклонения от номинальных значений действительных значений параметров встроенных источников опорных сигналов, используемых при измерении. Поправочные коэффициенты после подстройки записываются в память прибора и хранятся там после выключения питания.

3.4.3.2 Подстройка МИФВ-1 осуществляется в соответствии с методикой, изложенной в 5.13.

4 Подготовка прибора к работе

4.1 Эксплуатационные ограничения

4.1.1 Признаки выхода за пределы диапазона измерения

4.1.1.1 В случае, когда измеряемая величина выходит за пределы диапазона измерения, на экране прибора в таблице выводятся символы ">>MAX" или "<<MIN".

4.1.2 Признак разряда аккумуляторной батареи

4.1.2.1 При питании прибора от аккумуляторой батареи и снижении напряжения аккумуляторой батареи до величины (3,5±0,1) В на экране прибора выводится надпись "ВЫ-КЛЮЧЕНИЕ...низкий заряд батареи" и прибор отключается. Для заряда аккумуляторой батареи (см. 5.15) к прибору необходимо подключить блок питания, входящий в комплект УСИ-1, и включить прибор. В режиме меню выбрать пункт "зарядка".

4.2 Подключение прибора

4.2.1 Схема подключения МИФВ-1 к ТП или ПТП приведена на рисунке 5, схема подключения МИФВ-1 к ТС приведена на рисунке 6, схемы подключения МИФВ-2 к ТД для шестипроводной и четырехпроводной схемы приведены на рисунке 7 и рисунке 8 соответственно.

Рисунок 5

Рисунок 6

Рисунок 7

- 5 Работа прибора
 - 5.1 Режимы работы прибора
 - 5.1.1 Меню содержит 7 пунктов:
 - выключение;
 - конфигурация;
 - запись;
 - измерение;
 - калибровка;
 - цвет;
 - зарядка.
 - 5.2 Режим подсветки экрана

5.2.1 При работе прибора от аккумуляторной батареи и ненажатии любой кнопки в течение примерно 5 секунд подсветка экрана гаснет. Для включения подсветки необходимо нажать кнопку "←".

5.3 Включение прибора

5.3.1 Включение прибора осуществляется с помощью кнопки "Х". Вид экрана после включения показан на рисунке 9.

Рисунок 9

5.3.2 Индикатор "Последний сохраненный файл" отображает имя последнего файла
 с расширением .csv, сохранненого на SD карте после отключения прибора в режиме
 3 Зам. МКСН43-20 МКСН405544.030 РЭ
 15

"Отключение после измерения". Имя файла включает в себя восьмизначное число, соответствующее дате и времени начала измерения.

5.4 Выключение прибора

5.4.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "выключение" и нажмите кнопку "Х". Вид экрана прибора после нажатия кнопки "Х" показан на рисунке 10.

Рисунок 10

5.5 Определение адресов и исполнения модулей

5.5.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "конфигурация" и нажмите кнопку "←".

5.5.2 С помощью кнопок "▲", "▼" выберите пункт "конфигурация прибора" и нажмите кнопку "←". Вид экрана прибора показан на рисунке 11.

					ME	ME
20000	MI	M 2	MJ	M 4	MJ	NO
исполнение	1	0	0	0	0	0
			F		P	

5.5.3 Нажать два раза кнопку "← ". В таблице отобразятся значения адресов и исполнений модулей конфигурации прибора. Прибор запомнит выбранные значения и их установка при последующем включении не потребуется.

5.6 Изменение количества измерений

5.6.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "конфигурация" и нажмите кнопку "←".

5.6.2 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

5.6.3 Выберите пункт "Количество измерений" с помощью кнопок "◀", "▶" и нажмите кнопку "←". Прибор перейдет в режим редактирования. Вид экрана прибора после нажатия кнопки "←" показан на рисунке 12.

Конфигурация	Количество измерений N 0507

Рисунок 12

5.6.4 Редактирование числового значения количества измерений осуществляется посимвольно. Выбор символа осуществляется с помощью кнопок "▶", "◀". Каждый символ отдельно редактируется с помощью кнопок "▲", "▼".

5.6.5 После редактирования нажмите кнопку "← ". Прибор запомнит выбранное значение и его установка при последующем включении не потребуется.

5.7 Выключение после измерения

5.7.1 Выключение после измерения МИФВ-1

5.7.1.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "конфигурация" и нажмите кнопку "←".

5.7.1.2 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←". 5.7.1.3 Выберите пункт "Выключение после измерения" с помощью кнопки "◀" и, при необходимости, "▶". Вид экрана прибора показан на рисунке 13.

канал 1	канал 2	канал 3	канал 4	
Вт∕м²	мВ	мВ	мВ	
137				
канал 5	канал 6	канал 7	канал 8	
мВ	мВ	мВ	Вт∕м²	
			143	

Рисунок 13

5.7.1.4 Редактирование осуществляется с помощью кнопок "▲", "▼". Выберите "да" или "нет". После редактирования нажмите кнопку "←". Прибор запомнит выбранное значение и его установка при последующем включении не потребуется.

5.7.2 Выключение после измерения МИФВ-2

5.7.2.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "конфигурация" и нажмите кнопку "←".

5.7.2.2 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

5.7.2.3 Выберите пункт "Выключение после измерения" с помощью кнопки "◀" и, при необходимости, "▶". Вид экрана прибора показан на рисунке 14.

канал 1	канал 2	канал З	канал 4	
кг	кг	кг	Н	
00007,00	0010000	00100,00	0010000	
1099,9	1099,9	1099,9	10999	

Рисунок 14

5.7.2.4 Редактирование осуществляется с помощью кнопок "▲", "▼". Выберите "да" или "нет". После редактирования нажмите кнопку "←". Прибор запомнит выбранное значение и его установка при последующем включении не потребуется.

5.8 Изменение даты и времени

5.8.1 Изменение даты и времени МИФВ-1

5.8.1.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "конфигурация" и нажмите кнопку "←".

5.8.1.2 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

5.8.1.3 Выберите пункт "дата и время" с помощью кнопки "◀" и, при необходимости, "▶". Вид экрана прибора показан на рисунке 15.

5.8.1.4 Нажмите кнопку "←". Вид экрана прибора после нажатия кнопки "←" показан на рисунке 16.

канал 1	канал 2	канал 3	канал 4	
Вт/м²	мВ	мВ	мВ	
137				
канал 5	канал 6	канал 7	канал 8	
мВ	мВ	мВ	Вт∕м²	
			14,3	

Рисунок 15

Рисунок 16

5.8.1.5 Редактирование даты и времени осуществляется последовательным выбором числового значения для каждого редактируемого символа с помощью кнопок "▲", "▼". Выбор символа осуществляется с помощью кнопок "▶", "◀". После редактирования нажмите

кнопку "←". Прибор запомнит выбранное значение, и его установка при последующем включении не потребуется.

5.8.2 Изменение даты и времени МИФВ-2

5.8.2.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "конфигурация" и нажмите кнопку "←".

5.8.2.2 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

5.8.2.3 Выберите пункт "дата и время" с помощью кнопки "◀" и, при необходимости, "▶". Вид экрана прибора показан на рисунке 17.

5.8.2.4 Нажмите кнопку "← ". Вид экрана прибора после нажатия кнопки "← " показан на рисунке 18.

канал 1	канал 2	канал З	канал 4	
КГ	кг	кг	Н	
00007,00	0010000	0010000	0010000	
1099,9	1099,9	1099,9	1099,9	

Рисунок 18

5.8.2.5 Редактирование даты и времени осуществляется последовательным выбором числового значения для каждого редактируемого символа с помощью кнопок "▲", "▼". Выбор символа осуществляется с помощью кнопок "▶", "◀". После редактирования нажмите кнопку "←". Прибор запомнит выбранное значение, и его установка при последующем включении не потребуется.

3 Зам. МКСН43-20 20 5.9 Изменение интервала

5.9.1 Изменение интервала МИФВ-1

5.9.1.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "конфигурация" и нажмите кнопку "←".

5.9.1.2 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

5.9.1.3 Выберите пункт "Интервал" с помощью кнопки "◀" и при необходимости"▶". Вид экрана прибора показан на рисунке 19.

Рисунок 19

5.9.1.4 Редактирование осуществляется с помощью кнопок "▲", "▼".

5.9.1.5 Нажмите кнопку "▶". С помощью кнопок "▲", "▼" установите единицу измерения интервала "сек" или "мин".

5.9.1.6 После редактирования нажмите кнопку "←", при этом экран прибора должен кратковременно изменить цвет на красный. Прибор запомнит выбранное значение, и его установка при последующем включении не потребуется.

5.9.2 Изменение интервала МИФВ-2

5.9.2.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "конфигурация" и нажмите кнопку "←".

5.9.2.2 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

5.9.2.3 Выберите пункт "Интервал" с помощью кнопки "◀" и при необходимости"▶". Вид экрана прибора показан на рисунке 20.

канал	1 канал 2	канал З	канал 4
КГ	кг	кг	н
00007,00	0010000	00100,00	00100,00
1099,9	1099,9	1099,9	1099,9

Рисунок 20

5.9.2.4 Редактирование осуществляется с помощью кнопок "▲", "▼".

5.9.2.5 Нажмите кнопку "▶". С помощью кнопок "▲", "▼" установите единицу измерения интервала "сек" или "мин".

5.9.2.6 После редактирования нажмите кнопку "←", при этом экран прибора должен кратковременно изменить цвет на красный. Прибор запомнит выбранное значение, и его установка при последующем включении не потребуется.

5.10 Изменение типа преобразователя

5.10.1 Изменение типа преобразователя МИФВ-1

5.10.1.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "конфигурация" и нажмите кнопку "←".

5.10.1.2 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

5.10.1.3 Выберите пункт "Модуль" с помощью кнопки "◀" и, при необходимости "▶", и номер модуля с помощью кнопок "▲", "▼".

5.10.1.4 Выберите пункт "канал" и его номер с помощью кнопок "▶", "◀".

5.10.1.5 Редактирование типа преобразователя осуществляется с помощью кнопок "▲", "▼" в соответствии с таблицей 4.

Таблица 4

Тип преобразователя или	Символ
измеряемая величина	

Не задан	-
Напряжение	мВ
TXA	K °C
ТХК	L °C
ТПР	B °C
ТПП	S °C
ТСМ	50M °C
ТСМ	100M °C
ТСП	50П °С
ТСП	100П °С
TC	Pt50 °C
TC	Pt100 °C
ПТП	BT/M ²

5.10.1.6 При выборе ПТП и нажатии кнопки "←" прибор переходит в режим установки коэффициента преобразования ПТП. Вид экрана прибора после нажатия кнопки "←" показан на рисунке 21.

канал	1	канал 2	канал 3	канал
Вт/м ²		мВ	мВ	мВ
137		13,7	- 0,0	- 0,0
канал	5	канал б	канал 7	канал
мВ		мВ	мВ	Вт∕м²
- 0.0		- 0,0	- 0,0	14,3

Рисунок 21

5.10.1.7 Редактирование числового значения коэффициента преобразования ПТП осуществляется посимвольно. Выбор символа осуществляется с помощью кнопок "▶", "◀". Каждый символ отдельно редактируется с помощью кнопок "▲", "▼".

5.10.1.8 После редактирования типа преобразователя или коэффициента преобразования ПТП нажмите кнопку "←", при этом экран прибора должен кратковременно изменить цвет на красный. Прибор запомнит выбранное значение, и его установка при последующем включении не потребуется. Изменения вступят в силу после отключения прибора.

5.10.1.9 Возврат из режима редактирования коэффициента преобразования ПТП осуществляется с помощью кнопки "Х".

5.10.1.10 Изменения типа преобразователя по всем каналам вступают в силу после отключения прибора.

5.10.2 Изменение типа преобразователя МИФВ-2

5.10.2.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "конфигурация" и нажмите кнопку "←".

5.10.2.2 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

5.10.2.3 Выберите пункт "Модуль" с помощью кнопки "◀" и, при необходимости "▶", и номер модуля с помощью кнопок "▲", "▼".

5.10.2.4 Выберите пункт "канал" и его номер с помощью кнопок "▶", "◀".

5.10.2.5 Редактирование типа преобразователя осуществляется с помощью кнопок "▲", "▼" в соответствии с таблицей 5.

Измеряемая величина	Символ
Не задан	-
мВ/В	MB/B
Н	Н
КГ	КГ

Таблица 5

5.10.2.6 После редактирования типа преобразователя нажмите кнопку "←", при этом экран прибора должен кратковременно изменить цвет на красный. Прибор запомнит выбранное значение, и его установка при последующем включении не потребуется. Изменения вступят в силу после отключения прибора.

5.11 Запись

5.11.1 Пунт меню "запись" предназначен для записи заводских установок, в эксплуатации не доступен.

5.12 Измерение

5.12.1 Измерение МИФВ-1.

5.12.1.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "измерение". Вставить в слот прибора предварительно форматированную в файловой системе FAT32 SD карту и нажать кнопку "←". Вид экрана прибора после нажатия кнопки "← показан на рисунке 22.

5.12.1.2 Нажать кнопку "▶". Прибор перейдет в режим приема-передачи, индикатор "Начать прием" изменится на "Прием" и выделится цветом. Экран прибора погаснет, а светодиод " _ " засветится, сигнализируя о режиме приема-передачи. Время режима приемапередачи зависит от количества модулей и примерно равно (10 – 60) секунд.

5.12.1.3 После окончания режима приема-передачи экран прибора отобразит в таблице результаты измерений.

5.12.1.4 Нажать кнопку "◀". После завершения приема данных последнего модуля прибор остановит прием-передачу. Светодиод " →" погаснет, индикатор "Остановить прием" выделится цветом.

5.12.1.5 Для просмотра на экране прибора результатов измерений модулей используйте кнопки "▲", "▼".

5.12.1.6 Для просмотра результатов измерений, записанных на SD карту, необходимо извлечь SD карту из прибора и вставить в картридер ПК. Имя файла с расширением .csv включает в себя восьмизначное число, соответствующее дате и времени начала измерения. Пример записи файла показан на рисунке 23.

N 0001										
модуль	1 (04)									
	23_12_16	Тск	1 канал	2 канал	3 канал	4 канал	5 канал	6 канал	7 канал	8 канал
	9:24:10	-22.40 °C	-0.001 mV	-0.003 mV	-0.005 mV	-99.60 °C	-0.002 mV	-0.004 mV	-0.003 mV	-0.005 mV
N 0002										
модуль	1 (04)									
	23_12_16	Тск	1 канал	2 канал	3 канал	4 канал	5 канал	6 канал	7 канал	8 канал
	9:24:49	-22.21 °C	-0.001 mV	-0.003 mV	-0.004 mV	-49.72 °C	-0.003 mV	-0.004 mV	-0.004 mV	-0.003 mV
N 0003										
модуль	1 (04)									
	23_12_16	Тск	1 канал	2 канал	3 канал	4 канал	5 канал	6 канал	7 канал	8 канал
	9:25:29	-22.02 °C	-0.001 mV	-0.003 mV	-0.005 mV	0.193 °C	-0.005 mV	-0.003 mV	-0.003 mV	-0.006 mV
N 0004										
модуль	1 (04)									
	23_12_16	Тск	1 канал	2 канал	3 канал	4 канал	5 канал	6 канал	7 канал	8 канал
	9:26:09	-21.84 °C	-0.002 mV	-0.005 mV	-0.004 mV	249.5 °C	-0.004 mV	-0.003 mV	-0.004 mV	-0.005 mV
N 0005										
модуль	1 (04)									
	23_12_16	Тск	1 канал	2 канал	3 канал	4 канал	5 канал	6 канал	7 канал	8 канал
	9:26:49	-21.68 °C	-0.001 mV	-0.003 mV	-0.004 mV	498.8 °C	-0.002 mV	-0.003 mV	-0.004 mV	-0.006 mV
N 0006										
модуль	1 (04)									
	23_12_16	Тск	1 канал	2 канал	3 канал	4 канал	5 канал	6 канал	7 канал	8 канал
	9:27:29	-21.49 °C	-0.001 mV	-0.004 mV	-0.005 mV	748.1 °C	-0.003 mV	-0.003 mV	-0.003 mV	-0.004 mV
N 0007										
модуль	1 (04)									
	23_12_16	Тск	1 канал	2 канал	3 канал	4 канал	5 канал	6 канал	7 канал	8 канал
	9:28:09	-21.27 °C	-0.001 mV	-0.003 mV	-0.005 mV	847.8 °C	-0.003 mV	-0.002 mV	-0.005 mV	-0.004 mV

Рисунок 23

5.12.2 Измерение МИФВ-2.

5.12.2.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "измерение". Вставить в слот прибора предварительно форматированную в файловой системе FAT32 SD карту и нажать кнопку "←". Вид экрана прибора исполнения после нажатия кнопки "←" показан на рисунке 24.

5.12.2.2 Для балансировки нажать кнопку "←". Нажать кнопку "▶". Прибор перейдет в режим приема-передачи, индикатор "Начать прием" изменится на "Прием" и выделится цветом. Экран прибора погаснет, а светодиод " →" засветится, сигнализируя о режиме приема-передачи. Время режима приема-передачи зависит от количества модулей и примерно равно (10 – 60) секунд.

5.12.2.3 После окончания режима приема-передачи экран прибора отобразит в таблице результаты измерений.

5.12.2.4 Нажать кнопку "◀". После завершения приема данных последнего модуля прибор остановит прием-передачу. Светодиод " →" погаснет, индикатор "Остановить прием" выделится цветом.

5.12.2.5 Для просмотра на экране прибора результатов измерений модулей используйте кнопки "▲", "▼".

5.12.2.6 Для просмотра результатов измерений, записанных на SD карту, необходимо извлечь SD карту из прибора и вставить в картридер ПК. Имя файла с расширением .csv включает в себя восьмизначное число, соответствующее дате и времени начала измерения. Пример записи файла показан на рисунке 25.

N 0001					
модуль	1 (03)				
	09_02_17	1 канал	2 канал	3 канал	4 канал
	8:53:21	0.000mV/	1.998 kg	0.000mV/	0.010 kg
N 0002					
модуль	1 (03)				
	09_02_17	1 канал	2 канал	3 канал	4 канал
	8:53:40	0.000mV/	1.997 kg	0.000mV/	0.011 kg
N 0003					
модуль	1 (03)				
	09_02_17	1 канал	2 канал	3 канал	4 канал
	8:54:00	0.000mV/	1.999 kg	0.000mV/	0.010 kg
N 0004					
модуль	1 (03)				
	09_02_17	1 канал	2 канал	3 канал	4 канал
	8:54:20	0.000mV/	2.000 kg	0.000mV/	0.009 kg
N 0005					
модуль	1 (03)				
	09_02_17	1 канал	2 канал	3 канал	4 канал
	8:54:40	0.000mV/	2.001 kg	0.000mV/	0.010 kg

Рисунок 25

5.13 Подстройка (калибровка) модуля МИФВ-1

5.13.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "конфигурация" и нажмите кнопку "←".

5.13.2 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

3 Зам. МКСН43-20 27

МКСН.405544.030 РЭ

5.13.2.1 Задать следующие параметры конфигурации:

- количество модулей 1 (2, 3, 4, 5 или 6 определяется комплектностью прибора);
- количество измерений 1;
- интервал 1 мин;
- для всех каналов единицу измерения мВ.

5.13.3 Соединить приборы в соответствии со схемой, приведенной в приложении Б.

5.13.4 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "калибровка" и нажмите кнопку "←". Вид экрана прибора после нажатия кнопки "←" показан на рисунке 26.

Рисунок 26

5.13.5 Ввод кода пароля осуществляется последовательным выбором числового значения для каждого редактируемого символа с помощью кнопок "▲", "▼". Выбор символа осуществляется с помощью кнопок "▶", "◀".

5.13.6 Введите код пароля 1391 и нажмите кнопку "←".

5.13.7 После ввода пароля прибор перейдет в режим подстройки (калибровки). Вид экрана прибора после нажатия кнопки "←" показан на рисунке 27.

5.13.8 Введите номер модуля для подстройки с помощью кнопок "▲", "▼" и нажмите кнопку "←". Вид экрана прибора после нажатия кнопки "←" показан на рисунке 28.

5.13.9 Необходимо замкнуть контакты 2 и 3 каждого канала перемычкой и нажать кнопку "←" (в качестве перемычки используйте медный провод сечением 0,5-1,0 мм²). Прибор должен перейти в режим подстройки модуля, при этом цвет экрана прибора должен изменяться последовательно на красный, зеленый, синий, черный.

5.13.10 В случае ошибки подстройки вид экрана прибора должен соответствовать рисунку 29. Следует проверить цепи подключения прибора и повторить подстройку нажатием кнопки "—".

Рисунок 27

модуль 1
(калибровка о
Замкнуть каждый канал перемычкой и нажать кнопку " العبية"

Рисунок 28

Рисунок 29

5.13.11 В случае успешно проведенной операции вид экрана прибора должен соответствовать рисунку 30.

Рисунок 30

5.13.12 Установить на компараторе напряжение (100±0,005) мВ. Снять перемычку канала 8.

5.13.13 Подключить провода канала 8 коммутатора КИ-8 ТЕРМО к компаратору напряжений, соблюдая полярность, и нажать кнопку "←". Прибор должен перейти в режим подстройки модуля, при этом цвет экрана прибора должен изменяться последовательно на красный, зеленый, синий, черный.

5.13.14 В случае ошибки подстройки вид экрана прибора должен соответствовать рисунку 29. Следует проверить цепи подключения прибора и повторить подстройку нажатием кнопки "←".

5.13.15 В случае успешно проведенной операции вид экрана прибора должен соответствовать рисунку 31.

Рисунок 31

5.13.16 Нажать кнопку "Х", убедится, что прибор вышел из режима "калибровка".
5.13.17 Повторить действия 5.13.6 - 5.13.13 для остальных модулей.
3 Зам. МКСН43-20 МКСН43-20 ЯКСН43-20

5.13.18 Для инициализации подстройки прибор необходимо выключить.

5.14 Цвет

5.14.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "цвет" и нажмите кнопку "←". Вид экрана прибора после нажатия кнопки "←" показан на рисунке 32.

5.14.2 С помощью кнопок "▲", "▼" цвет экрана будет изменяться. Выберите любой цвет и нажмите кнопку "←", при этом экран прибора должен кратковременно изменить цвет на красный и войти в главное меню.

5.14.3 Прибор запомнит выбранное значение, и его установка при последующем включении не потребуется.

Рисунок 32

5.15 Зарядка

5.15.1 В режиме меню с помощью кнопок "▲", "▼" выберите пункт "зарядка". Вид экрана прибора показан на рисунке 33.

5.15.2 Прибор перейдет в режим зарядки аккумуляторой батареи и светодиод "+ " начнет мигать, экран прибора погаснет.

5.15.3 Для просмотра уровня зарядки аккумуляторой батареи нажмите кнопку " — ".

6 Поверка (калибровка) прибора

6.1 Данная методика определяет порядок периодической поверки прибора.
 Межповерочный интервал – один год.

- 6.2 Операции поверки
- 6.2.1 При проведении поверки должны быть выполнены операции, указанные в таблице 6.

Таблица 6

Наименование операции	Номер пункта
1 Внешний осмотр	6.7.1
2 Опробование	6.7.2
3 Определение основной абсолютной погрешности МИФВ-1 при измерении напряжения	6.7.3
4 Определение основной относительной погрешности МИФВ-1 при измерении температуры	6.7.4
5 Определение основной абсолютной погрешности МИФВ-1 при измерении плотности теплового потока	6.7.5
6 Определение основной относительной погрешности МИФВ-2 при измерении коэффициента преобразования	6.7.6

6.3 Средства поверки

6.3.1 При поверке применяются следующие приборы:

- компаратор напряжений Р3003. Необходимо установить диапазон калиброванных напряжений до 0,1 В для обеспечения выходного сопротивления не более 30 Ом. Класс точности не ниже 0,0005, выходное сопротивление не более 30 Ом;

- термостат нулевой ТН-3М;

- магазин сопротивлений Р4831. Класс точности 0,02, диапазон 0,01...1000 Ом Все средства поверки должны иметь свидетельства о поверке.

Примечание – Допускается применять для поверки другие приборы, удовлетворяющие перечисленным требованиям.

6.4 Требования безопасности и требования к квалификации поверителей

- 6.4.1 Подключение, ремонт и техническое обслуживание проводят при выключенном приборе.
- 6.4.2 К поверке допускаются лица, изучившие настоящее руководство по эксплуатации, средства поверки, и аттестованные в качестве поверителей согласно ПР 50.2.012-94.
 - 6.5 Условия поверки
- 6.5.1 Поверка прибора проводится при следующих условиях:
 - температура окружающего воздуха (20 ± 5) °C;
 - относительная влажность воздуха от 30 до 80 %;
 - атмосферное давление от 84 до 106,7 кПа;

- отсутствие внешних электрических и магнитных полей, влияющих на работу прибора.

- 6.6 Подготовка к поверке
- 6.6.1 Перед проведением поверки следует изучить разделы 1 5 настоящего руководства по эксплуатации.
- 6.6.2 Перед проведением поверки прибор необходимо выдержать во включенном состоянии не менее 10 минут. Средства поверки необходимо подготовить к работе согласно эксплуатационной документации на них.
- 6.6.3 Перед проведением поверки необходимо проведение подстройки прибора в соответствии с 5.13.

6.7 Проведение поверки

6.7.1 Внешний осмотр

6.7.1.1 При внешнем осмотре проверяется состояние корпусов прибора, отсутствие повреждений внешних разъемов, состояние покрытия лицевой панели. Должно быть установлено отсутствие грубых механических повреждений.

6.7.1.2 Прибор, не прошедший внешний осмотр, к дальнейшей поверке не допускается.

6.7.2 Опробование

6.7.2.1 Опробование прибора заключается в проверке функционирования всех кнопок и исправности ЖКЭ.

6.7.2.2 Проверка функционирования кнопок и исправности ЖКЭ прибора осуществляется во время подготовки к поверке согласно 6.6.

6.7.2.3 Приборы, не прошедшие опробование, к дальнейшей поверке не допускаются.

6.7.3 Определение основной абсолютной погрешности МИФВ-1 при измерении напряжения.

6.7.3.1 Соединить приборы в соответствии со схемой, приведенной в приложении А. Подключить компаратор напряжения через переключатель SW1 к входам "+", "-" канала 1.

6.7.3.2 Выбрать пункт меню "конфигурация" с помощью кнопки "▼" и нажать кнопку "←".

6.7.3.3 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

6.7.3.4 Задать следующие параметры конфигурации:

- количество модулей - 1 (2, 3, 4, 5 или 6 – определяется комплектностью прибора);

- количество измерений 1;
- интервал 1 мин;

- для всех каналов единицу измерения - мВ.

6.7.3.5 Выбрать пункт меню "измерение" и нажать кнопку " — ".

6.7.3.6 Установить на выходе компаратора значение напряжения U₁ в соответствии с таблицей 7. Переключатель SW1 при этом установить в соответствии с полярностью U₁ в положение 2.

6.7.3.7 Нажать кнопку "►". После завершения режима приема-передачи снять показания прибора. 6.7.3.8 Определить значение основной абсолютной погрешности прибора ΔU_1 по фор-

муле

$$\Delta U_1 = U_{1 np} - U_1, \qquad (1)$$

где U_{1 пр} – выводимое в таблицу значение напряжения, измеренное прибором, мВ; U₁ – напряжение, подаваемое с компаратора, мВ.

Таблица 7

Параметр	i = 1	i = 2	i = 3	i = 4	i = 5
Напряжение U _i , мВ	-499,000	-100	0	100	499,000
Пределы допускаемой основной абсолютной погрешности измерения напряжения ΔU_i , мкВ	±755	±156	±6	±156	±755

6.7.3.9 Повторить действия 6.7.3.5 - 6.7.3.8 для напряжений U₂ - U₅. Определить значение погрешностей U₂ - U₅. Переключатель SW1 устанавливать в соответствии с полярностью напряжения Ui:

- в положение 1 для положительных значений напряжения Ui;

- в положение 2 для отрицательных значений напряжения Ui;

- в положение 3 при нулевом значении напряжения Ui.

6.7.3.10 Основные абсолютные погрешности ∆Ui прибора не должны превышать значений, указанных в таблице 7.

6.7.3.11 Определить значение основной абсолютной погрешности ΔU₃ прибора по формуле 1 для каналов 2 - 8 при входном сигнале, равном 0 мВ (входы "2", - ,"8" закорочены перемычкой).

6.7.3.12 Выполнить операции 6.7.3.1 - 6.7.3.11 для остальных модулей (определяется комплектностью прибора).

6.7.3.13 Основные абсолютные погрешности ∆Ui прибора не должны превышать значений, указанных в таблице 7.

6.7.4 Определение основной приведенной погрешности МИФВ-1 при измерении температуры.

6.7.4.1 Соединить приборы в соответствии со схемой, приведенной в приложении В. Подключить компаратор напряжения через переключатель SW1 к входам "+", "-" канала 1.

6.7.4.2 Выбрать пункт меню "конфигурация" с помощью кнопки "▼" и нажать кнопку "←".

6.7.4.3 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

6.7.4.4 Задать следующие параметры конфигурации:

- количество модулей 1 (2, 3, 4, 5 или 6 определяется комплектностью прибора);
- количество измерений 1;
- интервал 1 мин;
- для первого канала тип преобразователя TПР(В).

6.7.4.5 Выбрать пункт меню "измерение" и нажать кнопку " — ".

 $\Delta_1 = 100 \cdot (T_{1 \text{ mp}} - T_1) / (\text{Tmax} - \text{Tmin})$,

6.7.4.6 Установить на выходе компаратора значение напряжения U₁, соответствующее температуре T₁ в соответствии с таблицей 8. Переключатель SW1 при этом установить в соответствии с полярностью U₁ в положение 2.

6.7.4.7 Нажать кнопку "►". После завершения режима приема-передачи снять показания прибора.

6.7.4.8 Определить значение основной приведенной погрешности прибора Δ_1 по фор-

(2)

муле

где Т_{1 пр} – выводимое в таблицу значение температуры, измеренное прибором, °С.

Tmax и Tmin – максимальное и минимальное значение измеряемой температуры .

Таблица 8

Тип преобразо-						
вателя, НСХ	Параметр	i = 1	i = 2	i = 3	i = 4	i = 5
THP(B)	Температура Ті, °С	300,0	700,0	1100,0	1500,0	1800,0
	Напряжение Ui, мВ	0,431	2,431	5,780	10,099	13,591
	Температура Ті, °С	0,0	450,0	900,0	1350,0	1750,0
	Напряжение Ui, мВ	0,000	3,742	8,449	13,766	18,503
TXA(K)	Температура Ті, °С	минус 50,0	0,0	450,0	900,0	1370,0
	Напряжение Ui,	минус	0,000	18,516	37,326	54,819
3 Зам. МКСН43-2	0			MKCH.40)5544.030 P	Э

	мВ	1,889				
	Температура Ті,	минус	150.0	300.0	650.0	800.0
TXK(L)	°C	50,0	150,0	500,0	050,0	800,0
	Напряжение Ui,	минус	10.624	22 843	53 492	66 466
	мВ	3,005	10,024	22,045	55,472	00,400

6.7.4.9 Повторить действия 6.7.4.5 - 6.7.4.8 для температур T₂ - T_{5.} Определить значение погрешностей Δ₂ - Δ_{5.} Переключатель SW1 устанавливать в соответствие с полярностью напряжения Ui:

- в положение 1 для положительных значений напряжения Ui;

- в положение 2 для отрицательных значений напряжения Ui.

6.7.4.10 Основная приведенная погрешность ∆і прибора не должна превышать значений, указанных в таблице 1.

6.7.4.11 Повторить действия 6.7.4.5 - 6.7.4.10 для преобразователей ТПП(S), ТХА(K), ТХК(L).

6.7.4.12 Повторить действия 6.7.4.5 - 6.7.4.11 для остальных модулей (определяет-ся комплектностью прибора).

6.7.4.13 Соединить приборы в соответствии со схемой, приведенной в приложении Г.

6.7.4.14 Выбрать пункт меню "конфигурация" с помощью кнопки "▼" и нажать кнопку "←".

6.7.4.15 С помощью кнопок "▲", "▼" выберите пункт "конфигурация модулей" и нажмите кнопку "←".

6.7.4.16 Задать следующие параметры конфигурации:

- количество модулей - 1 (2, 3, 4, 5 или 6 – определяется комплектностью прибора);

- количество измерений – 1;

- интервал – 1 мин;

- для первого канала тип преобразователя 50М.

Выключить и включить прибор для запоминания конфигурации.

6.7.4.17 Выбрать пункт меню "измерение" и нажать кнопку " — ".

6.7.4.18 Установить значение сопротивления R₁, соответствующее температуре T₁, в соответствии с таблицей 9 для соответствующего типа преобразователя.

Таблица 9

Тип преобразо-	Параметр	i = 1	i = 2	i = 3	i = 4	i = 5
вателя,						

НСХ						
50M ($a = 0.00428 \circ C^{-1}$)	Температура Ті, °С	минус 100,0	минус 50,0	0,0	100,0	200,0
	Сопротивление Ri, Ом	28,27	39,23	50,0	71,40	92,8
$100M (a = 0.00428 \ ^{\circ}C^{-1})$	Температура Ті, °С	минус 100,0	минус 50,0	0,0	100,0	200,0
	Сопротивление Ri, Ом	56,54	78,46	100,0	142,80	185,60
Pt50 ($\alpha = 0,00385 ^{\circ}\text{C}^{-1}$)	Температура Ті, °С	минус 100,0	минус 50,0	0,0	400,0	850,0
	Сопротивление Ri, Ом	30,13	40,155	50,0	123,55	195,24
Pt100	Температура Ті, °С	минус 100,0	минус 50,0	0,0	400,0	850,0
	Сопротивление Ri, Ом	60,26	80,31	100,0	247,09	390,48
50 Π ($\alpha = 0,00391 \ ^{\circ}C^{-1}$)	Температура Ті, °С	минус 100,0	минус 50,0	0,0	500,0	850,0
	Сопротивление Ri, Ом	29,82	40,0	50,0	141,93	197,58
$\frac{100\Pi}{(\alpha = 0,00391 \ ^{\circ}C^{-1})}$	Температура Ті, °С	минус 100,0	минус 50,0	0,0	500,0	850,0
	Сопротивление Ri, Ом	59,64	80,0	100,0	283,85	395,16

6.7.4.19 Нажать кнопку "▶". После завершения режима приема-передачи снять показания прибора.

6.7.4.20 Определить значение основной приведенной погрешности прибора Δ_1 по формуле (2).

6.7.4.21 Повторить действия 6.7.4.16 - 6.7.4.20 для температур $T_2 - T_5$. Определить значение погрешностей Δ_2 - Δ_5 .

6.7.4.22 Основная приведенная погрешность ∆і прибора не должна превышать значений, указанных в таблице 1.

6.7.4.23 Повторить действия 6.7.4.14 - 6.7.4.22 для преобразователей 100М, 50П, 100П, Pt50, Pt100.

6.7.4.24 Повторить действия 6.7.4.14 - 6.7.4.23 для остальных модулей (определяется комплектностью прибора).

6.7.5 Определение основной абсолютной погрешности МИФВ-1 при измерении плотности теплового потока

6.7.5.1 Соединить приборы в соответствии со схемой, приведенной в приложении Б. Подключить компаратор напряжения через переключатель SW1 к входам "+", "-" канала 1.

6.7.5.2 Выбрать пункт меню "конфигурация" с помощью кнопки "▼" и нажать кнопку "←".

6.7.5.3 С помощью кнопок "▲", "▼" выбрать пункт "конфигурация модулей" и нажать кнопку "←".

6.7.5.4 Задать следующие параметры конфигурации:

- количество модулей 1 (2, 3, 4, 5 или 6 определяется комплектностью прибора);
- количество измерений 1;
- интервал 1 мин;
- для первого канала единицу измерения Вт/м².

6.7.5.5 Установить для первого канала коэффициент преобразования 10.0 Вт/ (м²·мВ).

6.7.5.6 Выбрать пункт меню "измерение" и нажать кнопку " — ".

6.7.5.7 Установить на выходе компаратора значение напряжения U₁, соответствующее плотности теплового потока D₁ в соответствии с таблицей 10. Переключатель SW1 при этом установить в соответствии с полярностью U₁ в положение 1.

Таблица 10

Тип преоб- разователя,	ЭДС (І	Ji), мВ	Плотность теплового потока (Di), Вт/м ²		
HCX Ui Значение			Di	Значение	
ПТП	U1	200	D 1	2000	
	U2	100	D2	1000	
	U3	50	D3	500	
	U4	25	D4	250	
	U5	5	D5	50	

6.7.5.8 Нажать кнопку "▶". После завершения режима приема-передачи снять показания прибора.

6.7.5.9 Определить значение основной абсолютной погрешности прибора ΔD_1 , Вт/м², по формуле

$$\Delta \mathbf{D}_1 = \mathbf{D}_{np} - \mathbf{D}_1 \,, \tag{3}$$

где $D_{\mbox{\scriptsize np}}-$ значение плотности теплового потока, измеренное прибором, $Bt/m^2.$

6.7.5.10 Повторить действия 6.7.5.6 - 6.7.5.9 для напряжений U_2 - U_5 . Определить значение погрешностей $D_2 - D_5$.

6.7.5.11 Основная абсолютная погрешность ΔDi прибора не должна превышать значений, указанных в таблице 2.

6.7.5.12 Выполнить действия 6.7.5.2 - 6.7.5.11 для остальных модулей (определяется комплектностью прибора).

6.7.6 Определение основной относительной погрешности МИФВ-2

6.7.6.1 Соединить приборы в соответствии со схемой, приведенной в приложении Д.

6.7.6.2 Включить прибор нажатием кнопки "Х" и по истечении времени установления рабочего режима, равного 10 минутам, продолжить проверку.

6.7.6.3 Выбрать пункт меню "конфигурация" с помощью кнопки "▼" и нажать кнопку "←". Выбрать пункт "конфигурация модулей " с помощью кнопки "▼" и нажать кнопку "←".

6.7.6.4 С помощью кнопок "▲", "▼" выбрать пункт "конфигурация модулей" и нажать кнопку "←".

6.7.6.5 Задать следующие параметры конфигурации:

- количество модулей - 1 (2, 3, 4, 5 или 6 – определяется комплектностью прибора);

- количество измерений – 1;

- интервал – 1 мин;

- для первого канала единицу измерения - мВ/В;

- чувствительность для первого канала 10,0;

- предел измерения для первого канала 10,0.

6.7.6.6 Выбрать пункт меню "измерение" и нажать кнопку " — ".

6.7.6.7 Отбалансировать "мост". Выставить на магазине сопротивлений значение сопротивления 500,000 Ом и нажать кнопку "←".

6.7.6.8 Выставить на магазине сопротивлений значение сопротивления R1, соответ-

ствующее коэффициенту преобразования S₁ в соответствии с таблицей 11, и нажать кнопку "▶". После окончания режима приема-передачи снять показания прибора.

Таблица 11

Параметр	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7
Сопротивление R _i , Ом	490,00	495,00	499,00	500,00	501,00	505,00	510,00
Коэффициент преобразования S _i , мВ/В	минус 5,051	минус 2,513	минус 0,500	0,0	0,500	2,488	4,950

6.7.6.9 Определить значение основной относительной погрешности измерения прибором коэффициента преобразования Δ₁ по формуле

3 Зам. МКСН43-20 40

$$\Delta_1 = 100 \cdot (S_{1 np} - S_1) / S_1, \qquad (4)$$

где S_{1 пр} – выводимое в таблицу значение коэффициента преобразования, измеренное прибором, мВ/В;

6.7.6.10 Повторить действия 6.7.6.7-6.7.6.9 для коэффициента преобразования S₂- S_{7.} Определить значения основных относительных погрешностей Δ₂-Δ_{7.}

6.7.6.11 Значение основной относительной погрешности ∆і прибора не должно превышать значения, указанного в 3.2.10.

6.7.6.12 Выполнить операции 6.7.6.3-6.7.6.11 для остальных модулей.

6.8 Оформление результатов поверки (калибровки)

6.8.1 В ходе поверки (калибровки) составляется протокол с указанием всех результатов измерений. Форма протокола - произвольная.

7 Техническое обслуживание

7.1 Техническое обслуживание прибора проводится оператором. Рекомендуется не реже одного раза в месяц проводить контроль электрических соединений, удалять пыль с корпуса и загрязнения лицевой панели тампоном, смоченным в спирте. Все операции по техническому обслуживанию проводить при выключенном приборе.

8 Текущий ремонт

8.1 Ремонт приборов осуществляется на предприятии – изготовителе. После ремонта прибор должен быть подвергнут поверке (калибровке).
 Обращаться по адресу: 644009, Россия, г. Омск, ул. Лермонтова, 175;

AO « НПП « Эталон », тел. ОТК (3812) 36-95-92; E-mail: <u>fgup@omsketalon.ru</u>.

9 Транспортирование и хранение

9.1 Приборы, упакованные в транспортную тару предприятия-изготовителя, могут транспортироваться любым видом закрытого транспортного средства. При транспортировании воздушным транспортом приборы должны располагаться в отапливаемом герметизированном отсеке.

9.2 Условия транспортирования приборов в упаковке предприятия-изготовителя должны соответствовать условиям 3 по ГОСТ 15150-69. На таре должны быть указаны условия транспортирования.

9.3 Хранение приборов должно осуществляться в упаковке предприятия-изготовителя в соответствии с условиями хранения 1 по ГОСТ 15150-69.

9.4 Транспортирование и хранение приборов должно осуществляться в отсутствии агрессивных сред, вызывающих коррозию.

9.5 Погрузочно-разгрузочные работы должны осуществляться без ударов.

10 Пломбирование

10.1 Прибор должен быть опломбирован отделом технического контроля (ОТК) предприятия-изготовителя, пломба ставится на один из винтов, расположенных на задней крышке УСИ-1. Нарушение пломбы запрещено.

11 Сроки службы и хранения, гарантии изготовителя

11.1 Изготовитель гарантирует соответствие прибора требованиям МКСН.405544.030 ТУ при соблюдении потребителем правил эксплуатации, хранения и транспортирования.

11.2 Гарантийный срок хранения – 6 месяцев со дня изготовления. Гарантийный срок эксплуатации – 12 месяцев со дня ввода прибора в эксплуатацию, но не более 18 месяцев со дня выпуска. Гарантия не распространяется на элементы питания.

11.3 Гарантийный и послегарантийный ремонт прибора осуществляется в условиях предприятия-изготовителя.

11.4 Средний срок службы не менее 8 лет.

Приложение А (обязательное)

МКСН.405544.030 РЭ

Исполнения прибора

Таблица А.1

Исполнение	Количество КИ-8 ТЕРМО, шт.	Количество КИ-4 ТЕНЗО, шт.	Количество кабелей, шт.	Масса прибора, кг, не более
МИФВ-1-1	1	-	1	1,75
МИФВ-1-2	2	-	2	1,85
МИФВ-1-3	3	-	3	2,05
МИФВ-1-4	4	-	4	2,2
МИФВ-1-5	5	-	5	2,35
МИФВ-1-6	6	-	6	2,5
МИФВ-2-1	-	1	1	1,75
МИФВ-2-2	-	2	2	1,85
МИФВ-2-3	-	3	3	2,05
МИФВ-2-4	-	4	4	2,2
МИФВ-2-5	-	5	5	2,35
МИФВ-2-6	-	6	6	2,5

Приложение Б

(обязательное)

Схема подключения приборов и оборудования для подстройки и для определения основной

погрешности МИФВ-1 при измерении напряжения и плотности теплового потока

МКСН.405544.030 РЭ

А1-коммутатор измерительный КИ-8 ТЕРМО;

А2 – устройство сбора информации УСИ-1;

Р1 – компаратор напряжений РЗООЗ в режиме калибратора напряжений;

SW1 – переключатель на три положения и два направления;

Кабель 1 – кабель МКСН.434641.086.

Цепи вести медным монтажным проводом сечением не менее 0,2 мм 2 .

Приложение В

(обязательное)

Схема подключения приборов и оборудования для определения основной погрешности МИФВ-1 при измерении температуры ТП

A1 – термостат нулевой TH-3M;

А2 – коммутатор измерительный КИ-8 ТЕРМО;

АЗ – устройство сбора информации УСИ-1;

Р1 – компаратор напряжений Р3003 в режиме калибратора напряжений;

SW1 – переключатель на три положения и два направления;

Кабель 1 – кабель МКСН.434641.086.

Цепи, обозначенные на схеме "+" и "-", выполнить компенсационными проводами для соответствующего типа термопары.

Необозначенные цепи вести медным монтажным проводом сечением не менее 0,2 мм².

Приложение Г

(обязательное)

Схема подключения приборов и оборудования для определения основной погрешности МИФВ-1 при измерении температуры TC

А1 – коммутатор измерительный КИ-8 ТЕРМО;

А2 – устройство сбора информации УСИ-1;

PR1 – магазин сопротивлений P4831;

Кабель 1 – кабель МКСН.434641.086.

Необозначенные цепи вести медным монтажным проводом сечением не менее 0,2 мм².

Приложение Д (обязательное) Схема подключения приборов и оборудования для определения основной погрешности МИФВ-2

- А1 коммутатор измерительный КИ-4 ТЕНЗО;
- А2 устройство сбора информации УСИ-1.
- PR1 магазин сопротивлений P4831;
- R1...R3 резистор Z201T 500Ом ±0,005%;
- Кабель 1 кабель МКСН.434641.086.

Необозначенные цепи вести медным монтажным проводом сечением не менее 0,2 мм 2

Изм.		Номер листов (страниц)			Всего		Входящий №		
	изменен- зам			аннулиро-	листов (стра-	N⁰	сопроводитель-	Подп.	Дата
		замененных	новых	ванных	ниц)	докум.	ного		
					в документе		документа		

Лист регистрации изменений